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PARTICLE SIZE DISTRIBUTIONS FORMED BY ATMOSPHERIC HYDROLYSIS
OF URANIUM HEXAFLUORIDE

C. K. Bayne and W. D. Bostick

ABSTRACT

The probability model for particle size data is usually
assumed to be lognormal. For Pickrell’s (1982) UF, data,
the lognormal is inappropriate and Johnson”s S_ frequency
curves are shown to be suitable alternative mogels. The type
of particle size measurement, either mass or number, is also
an important comsideration for modeling. Converting from one
measurement type to the other illustrated by UF_  aerosol
data does not necessarily preserve the same progability
distribution. :

I. INTRODUCTION
When gaseous uranium hexafluoride (UF6) is released into the
atmosphere, it rapidly reacts with ambient moisture to form an aerosol of

uranyl fluoride (U02F2) particles and hydrogen fluoride (HF) vapor:

UF, (g) + 21,0 (g) — UO,F, (s) + 4HF (g) .

The U.S. Department of Energy has mandated a safety analysis effort to
evaluate the potential for accident and to predict the human health
consequences of postulated UF6 releases. Evaluation of the aerodynamic
behavior of aerosol particulates is an important component in this effort,
because this property is a major determinant in the settling rate (and,

hence, the dispersion) of the uranium-containing material (Bostick et al.,

1984).




Pickrell (1982) has summarized the results (Appendix Al) for a number
of experimental releases of UF6 in a contained volume under a variety of
static conditions, including the relative humidity of the air and the

temperature of the UF, at the instant of its release. For a series of

6
experiments, aerodynamic particle size distributions were obtained as a
function of time elapsed from the moment of release. Our objective in this
communication is to present a detailed statistical evaluation of the
particle size data presented by Pickrell,

In particular, we sought to derive a probability distribution function
to adequately describe the experimental data obtained at any given sampling
interval, and secondarily, to relate distributional parameters to the
experimental variables of elapsed time, humidity, and pre-release
temperature of the UF6 sample. This information is expected to be of
value to DOE sponsored investigators developing dispersion models for
transport of uranyl fluoride particulates under postulated release
conditions.

The probability distribution of particle sizes is usually examined by
histograms, or an assumed lognormal distribution is fitted to the data.
Other distributional forms have been suggested by Sehmel (1968) and
Viswanathan and Mani (1982). The present analysis uses skewness and
kurtosis statistics derived from the data to first determine the form of
the probability distribution. These forms are then selected from Johnson”s
system of frequency curves (Johnson, 1949). Parameters used to determine
the shape of these empirical distributions have not yet been demonstrated
to correlate with the experimental variables of relative humidity and

release temperature.




II. PARTICLE SIZE DATA
A piezoelectric quartz-crystal microbalance impactor (model PC-2,
California Measurements, Inc.) was used to measure mass concentration and

particle size distribution of air suspended UF, particles. The aerosol

6
stream entering the 10-stage cascade impactor encounters the largest nozzle
first, with nozzles becoming progressively smaller in the subsequent
stages. Each stage collects particles in a defined range of diameter
sizes. It is customary to designate a stage by the particle size at which
there is a 50% probability of capture of a specific mass density. Table 1
gives the 0%, 50%, and 1007 capture probabilities for the UF6 experiment.
These probabilities were calculated from capture probabilities given in
Fig. 1 derived from the instruction manual for the piezoelectric QCM
cascade impactor by assuming a particle density of 4g/cm3 (Bostick et al.,
1984).

Table 1. Particle sizes (micrometers) at 0%, 50%, and 100%
capture probabilities for cascade impactor stages.

Stage 0% 50% 100%
1 12.021 17.678 26.163
2 6.010 8.839 12.021
3 3.005 4.526 6.010
4 1.520 2.263 3.005
5 0.778 1.131 1.520
6 0.375 0.566 0.778
7 0.219 0.283 0.375
8 0.106 0.141 0.219
9 0.050 0.071 0.106

10 0.023 0.035 0.050

Associated with each stage is a mass concentration that represents a

fraction of the total mass captured in that stage. These mass fractions

can also be interpreted as mass probabilities of particle sizes in a given
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stage. Mass fractions for the UF6 experiments are recorded in five tables

. by Pickréll (1982), see Table A.l. These five tables represent different

relative humidity, release temperatures, and sampling times. Table 2 shows

31 different_conditions under which aerosols were collected.

Table 2. Relative humidity, release temperature, and time after
release from Pickrell (1982). Table entries are the data
table numbers (i.e., 1, 2, 3, 4, and 5).

Humidity: 33% 85% 70% 707 100%
Temp. : 65°C 65-69 °C 75°C 100°C 85°C

Time

3 4
4 ' 5
8 1 2 3
17 ‘ 1
. 18 5
20 3
25 4
30 5
38 1
40 3
45 5
52 2
55 4
90 2 3 5
120 4
150 2 5
180 1 , 4
210 2
300 3
330 2 5
360 1 4
390 3
420 2




Table 2 shows that experimental conditions varied a great deal.
Relative humidity and release temperature effects were not properly
controlled as a factorial design and thus the two effects are statistically
partially confounded. This confounding of the effects may explain the
difficulty of relatihg distributional parameters to these two factors. 1In
addition, elapsed time before sampling was not taken at uniform intervéls

and this factor is also confounded with the other two factors.




IIT. PROBABILITY DISTRIBUTION ANALYSIS
Particle size probability models can be based on four moments
calculated from the data. Suppose for fixed values of the three
experimental factors (i.e., relative humidity, release temperature, and
sampling time), the 50% diameter is denoted by Dj for the j~th stage and
denote the corresponding mass fraction by fj’ then the mean of the data is

calculated by:
D = D.f. .
The second, third, and fourth central moments can then be calculated by:

10 -k
M = Y (@-D)Vf., k=2,3,4 .
j=1 J ]
The skewness and kurtosis statistics based on the standardized third and

fourth central moments, respectively, can be used to determine many

distributions.

/Bl = skewness = M3/(M2)3/2
_ . 2
B2 = kurtosis = M4/(M2) .

A distribution that is symmetrical will have theoretical skewness of zero.
A distribution with a long tail extending to the right will usually have a
positive skewness while those extending to the left will usually have a

negative skewﬁess. Kurtosis is sometimes interpreted as the peakedness of
the distribution. However, kurtosis vaiues are very much dependent on the

shape of distributional tails and may have little to do with any central

peak. The theoretical skewness and kurtosis values of the normal




distribution are (/EI,BZ) = (0,3). Other distributions can be determined
either by (/EI,BZ) or a function of (/EI,BZ). For example, the lognormal -

distribution is determined by the parametric form:

(w-1) (w+2)2

w-
i

3

+ 3w® -3

where w = exp(variance of In(data)).

For the data summarized in Table A.1, fig. 2 is a plot of sample
kurtosis values versus Bl values (squared sample skewness values).
Theoretical values for the logﬁormal distribution are superimposed on the

graph. These results show that the lognormal distribution is not a very

v

good probability model for these particle size distributions. Also the

(B1,B2) values fall on a line defined by:
B2 = 2.65 + 1.05B1

even though the data were collected under a variety of conditions. This
result indicates that all of the particle size distributions are in the
same general class of distribution.

A method of empirically modeling the distribution is to transform the
data so that it has a normal distribution. The Johnson’s system (Johnson,
1949) of distributions is a method of transforming data to have a normal
distribution. This system has three types of transformations: 1) SU ;
systems for data with an unbouqded range =© < D < + o, 2) SL system for

lognormal data with a semi-bounded range 0 < D < + ®, and 3) SB system for

data with a bounded range A < D < B. In Fig. 2, the SL system is

represented by the 82 vs 51 curve for lognormal data and is the boundary
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10

between SU and SB' B2 values above the lognormal curve are in SU and

values below the lognormal curve are in Sg- The B2 versus Bl plot in Fig.

2 indicates that the particle size data fall into the SB system. This
implies that the following transformation for particle sizes in the range A

< D < B should be used.

<
]

(D-A)/(B-A), 0 <YK

3

[
]

G + H¥1n(Y/(1-Y)) .

where Z is a standardized normal variate (i.e., zero mean, and variance

equal to one). To fit particle size distributions with this transforma-

tion, the four parameters A, B, G, and H must be estimated from the data.
The two parameters A, and B representing the endpoints of the particle

size range were assigned the values:

L
]

0.01, and

-}
]

27.0 .

These values were chosen by considering the possible upper and lower limits
of the data range (see Table 1 and Fig. 1).

Parameters G and H are estimated by fitting theoretical probability
values to data frequency values. Let fj correspond to a mass frequency

value for particle size Dj in the interval aj < Dj < bj' This means that

Pr(a. < D. <b.,) =f
] ] ]

j

»”
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The theoretical probability demsity function, p(D) in Johnson’s Sy system
is:

p(D) = Hexp(~0.5%22)/[/TTFM*(B-A)*Y*(1-Y)]

with ™ = 3.14159...

To calculate the theoretical value corresponding to fj’ the density
function, p(D), is integrated over the interval aj < Dj < bj' Call this
theoretical probability Pj(G,H) to denote the dependency on the parameters
G and H. Parameters G and H are estimated by minimizing the following sum
of squares for a fixed set of data conditioms (i.e., relative humidity,
release temperature, and sampling time):

10
8S = Sum of Squares = » (f. - P.(G,H))2 .
&1 3 i
This minimization was done by using PROC NLIN in the Statistical Analysis
System (SAS, 1982). Estimated values for G and H are tabulated in Table 3.
These estimates can be used to calculate a theoretical particle size
frequency for any of the 10 impactor stages. For example, the G and H

estimates in data Table 1 for 8 minutes are G = 14.44 and H = 3.09. The

theoretical particle size frequency for stage 7 is:
0.219 <D < 0.375
0.0077 <Y = (D-0.01)/(27.0-0.01) < 0.0135

-0.5737 < Z

]

14.44 + 3.09 1n(Y/(1-Y)) < 1.1793

Pr(-0.5737 < Z < 1.1793) = Q(1.1793) - Q(-0.5737)

Pr(-0.5737 < Z < 1.1793) = 0.88 - 0.28 = 0.60
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where for the standardized normal variate Z: Q(z) = Pr(-»< Z < z). The

observed frequency for this stage is f_ = 0.55. -

7

Table 3. Estimated G and H parameters for Johnson’s S_ system.
Included are the minimum sum of square values, standard
deviations of the estimates and median values of the
theoretical distributions.

Table Time G H St Dev St Dev Sum of Median

G H Squares

1 8 14.44 3.09 1.27 0.26 0.0135 0.260
1 17 8.25 1.85 0.44 0.10 0.0036 0.321
1 38 6.90 1.61 0.86 0.19 0.0198 0.379
1 180 4.71 1.18 0.42 0.10 0.0097 0.508
1 360 5.88 1.45 0.31 0.07 0.0039 0.469
2 8 12.86 2.97 '1.70 0.40 0.0127 0.359 s
2 52 10.15 2.56 1.45 0.35 0.0455 0.514
2 90 6.35 1.47 1.26 0.28 0.0472 0.363
2 150 6.40 1.50 1.36 0.31 0.0576 0.389
2 210 5.30 1.24 . 0.83 0.19 0.0277 0.383
2 330 7.01 1.68 0.89 0.20 0.0226 0.413
2 420 4.14 0.88 ° 0.73 0.15 0.0278 0.255
3 0 15.29 3.32 1.63 0.35 0.0291 0.279
3 20 12.94 2.82 1.60 0.35 0.0368 0.283
3 40 9.27 2.04 1.55 0.34 0.0414 0.293
3 90 3.29 0.69 0.77 0.15 0.0380 0.230
3 300 3.25 0.58 0.95 0.18 0.0536 0.113
3 390 3.39 0.60 0.89 0.16 0.0442 0.103
4 3 14.05 3.03 2.33 0.49 0.0588 0.269
4 25 7.71 1.82 1.05 0.24 0.0249 0.395
4 55 5.75  1.42 - 0.87 0.21 0.0319 0.476
4 120 8.96 2,71 1.52 0.43 0.0408 0.960
4 180 7.89 2.39 1.57 0.45 0.0655 0.967
4 360 3.41 0.73 0.56 0.11 0.0201 0.264
5 4 5.46 1.18 0.96 0.20 0.0333 0.271
5 18 4.86 1.04 0.83 0.17 0.0293 . 0.258 *
5 30 5.62 1.33 1.28 0.29 0.0624 0.401
5 45 5.67 1.38 0.99 0.23 0.0401 0.447
5 90 3.81 0.93 0.82 0.19 0.0435 0.467 )
5 150 4.45 1.12 0.86 0.21 0.0426 - 0.505
5

330 4.07 0.96 0.83 0.19 0.0391 . 0.387
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Goodness of fit is judged by examining plots of the fitted probability
values. Figure 3 plots the cumulative distribution function (i.e., Pr(0 <
D < diameter)) for the best case (Table 1, sample time = 180) with SS =
0.0036 and worst case (Table 5, sample time = 150) with 85 = 0.0655. Most
of the fitted.probability distributions fell somewhere in between these two
cases with an overall average of SS = 0.0344. Some difficulties
encountered with fitting distributional functions are due to the bimodality
and large frequency at smaller diameters for some data sets. Except for
five or six cases, most fits were judged to be relatively good for this
data. Using estimated G and H values, theoretical probability demnsity
functions for particle sizes can be drawn and are illustrated in Figs. 4-8.

In Fig. 9, the computed median aerodynamic particle size is plotted as
a function of time elapsed from the moment of UF6 release. This figure
confirms the qualitative observation (Pickrell, 1982) that initially after
the release, the average particle size tends to increase, due to the
process of particle agglomeration. After a relatively longer time, average
airborne particle size decreases, due to the more rapid sedimentation of
the larger agglomerates (Bostick et al., 1984). An attempt was also made
to correlate the parameters in Table 3 with the experimental conditions of

humidity and release temperature. However, no conclusion inference could

be made from this study.
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IV. APPLICATION TO UOéF2

Lux (1982) has reported on the measurement of the geometric particle

GEOMETRIC PARTICLE SIZE NUMBER DISTRIBUTION

size number distribution in the fallout material from a series of
experimental UF6 releases. Lux makes the qualitative observation that
relative humidity (20% to 90% RH), ambient air temperature (0 to 40°c), and
sample size do not seriously affect the U02F2 particulate size distribution
(~0.5 to 3.0 u). Results (Appendix A2) were tabulated for pooled data
(i.e., varying conditions of RH and air temperature) under three
experimental release conditions. These conditions are designated as

"catastrophic" conditions. These

"static", "dynamic", and simulated
designations refer to the release mode:
1. Static is a release in stagnant air.
2. Dynamic is a release into a simulated 2 to 4.5 mph cross-wind.
3. Catastrophic is a rapid release and evaporation of liquid UF6.

Lux”’s data is analyzed using the methods in the previous section.

Table 4 shows the Bl and B2 values for the three release modes.

Table 4. Values of Bl and B2 for Lux’s data.

Data Bl B2
Static 3.45 - 7.37
Dynamic 3.94 7.58
Catastrophic 0.27 3.81

These Bl and B2 values are close to the lognormal curve and suggest that
either a lognormal or SB distribution may fit the data equally well. To

fit the lognormal distribution, the following transformation can be used:

Z =G+ Hln(D), 0 <D < =

21
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where Z is a standardized normal variate. The statistic for the fitted

Johnson“s SB and lognormal distributions are given in Table 5.

Table 5. Parameter estimates for Johnson”s S, and lognormal
distributions with their sum of squares (8S). The
standard deviations of the estimates are in parentheses.

Johnson § Lognormal
Data B n .
SS G H Median SS G H Median
Static 0.0027 3.07 1.71 1.44 0.0030 -0.72 2.04 1.42
(0.17) (0.09) (0.08) (0.11)
Dynamic 0.0011 2.95 1.55 1.30 0.0014 -0.46 1.80 1.29
(0.11) (0.05) (0.05) (0.07)

Catastrophic 0.0041 4.46 1.79 0.77 0.0049 0.50 1.94 0.77
(0.28) (0.10) (0.09) (0.12)

Both distributions fit the data very well with Johnson’s SB
distribution having a slightly smaller sum of squares than the lognormal
sum of squares. The density function for the two fits are plotted in Figs.
10 and 11. 1Inferences are the same from either distribution. The median
particle size decreases with the severity of the release mode with
catastrophic mode being the largest decrease.
It is important to bear in mind that Lux“s data represent a number
distribution for uranyl fluoride particles in fallout material, sorted by
geometric particle size. Whereas, Pickrell’s data represent mass -
distribution for airborne material, sorted by aerodynamic particle size.

Number and mass distributions can be related if the simplifying assumption

is made that particles are spherical:




23

oo0°€ Gg.°¢

_-........b\-tp—lFP.-__.._..._._...._...-_-.-....-._.__._....——_..—»..._........-_.-......._........._.._......_.......___

06°¢

ge'a

*B3B(Q S,XNT 03 P9IITI S9AINY mm s, uosuyor

00°'c

(SNOHOIW) H313WVId

SL°Y 08°1 sec'}t

00°7

SL°0

0s°'0

‘0T 'STd

G52°0

00°0

JIHCONLSYLVD
JIWVNAD = &
JILVLS = V

SY769T1-780MA

=3

="IN40

S3AHND-88 NOSNHOL

VLV X1

c"0

{ARY

8°0

8°0

0’7

c' ¥

LIODOZOFFHOZ

QWZWHRF>




24

"BIBQ S,XN7T 03 PIIITJ SUOTINQTIAISTQ Tewioulo] ‘T[T -S4

(SNOHIJIW) H3L3IWVIQA

00'€ GSL'2 o0s'2 S22 00°2 G4°F 0S°F  G2'FT  00°F S.°0 0S'0 S2°0 00°0
Fr[......_:__..:L..._.CL.T:.....L...._.__._..::..._...._.._._........._.._....___..._._...__.___._:_....:._._

-0°0

20

WV.o

-9 0

JIHHOYLSYLIV] = O
JIWYNAG = 4
JILVLS = ¥

9%69T-78OMI-"INJO

lllllllll'l’ll["lll
1]
o

o
-

7
~
Ill!ll!lll’

u
-t

S3AHND TYWHONSQT

VILVA XN'T

LDZOFHOZ

AQWZ®wHE>




25

; N = Total number of particles.
M = Total mass particles
~ gj = Number frequency for the j-th interval.
fj = Mass frequency for the j-th interval.
d = Particle density.

For the j-th interval, j =1, 2,..., 10, we have:

Mass = Number x volume x density

Mf .
J

Because the mass frequencies sum to one, we have the relationm:

3
(Ngj)('”*Dj /16)d.

3 3
£, =g.D. D.3, =1, 2,..., 10 .
;=8P /T 8Py ]

0

Using this relationship, Lux’s data were converted to mass frequency.

. The 50% diameters were used for the first nine intervals while the diameter
for the tenth interval was calculated as an average diameter over the last
interval assuming a lognormal distribution of the particle numbers. This
modification reduced the diameter size used for the last interval.
Reducing the diameter for the tenth interval was done to minimize the
‘effect of the arbitrary assignment of 50% diameters to the last interval.
Because diameters are cubed, the diameter for the last interval makes a
major contribution to mass frequencies.

Converted mass frequency distributions were then fitted using both
lognormal and Johnson’s frequency distributions. The lognormal
distributions are displayed in Fig. 12 and show a shift to the right with

the median value about twice that for number frequencies. Both lognormal

and Johnson”s frequency distributions adequately describe the mass




26

1.25 :
NUMBER DISTRIBUTION .
N
i
. STATIC
.00 | \c
, DYNAMIC

g CATASTROPHIC
50.75
=
D
w
>
[
@ 0.50
=
L
(@]

0.25

0.00

ATI
1.00 |- STATIC
—————— DYNAMIC

z —-—-— CATASTROPHIC
5075
=
-
w
-
@ 0.50 — / \\<C
E A .
a]

0.25

0.00 |-

0 1 2 3 4 5 6 7 8

DIAMETER (MICRONS)

Fig. 12. Lognormal Distribution for Number and Mass Fr'equencilés
of Lux's Data.




27

frequency distribution. For Lux“s data, the lognormal distribution is
preserved under the conversion of number to mass frequencies.

The conversion of mass frequency to number frequency can also be made.
The effect of this conversion was examined by calculating changes in the
skewness and kurtosis statistics. Pickrell”s Table 1 data was used because
the mass frequencies are distributed as Johnson”s frequencies and are not

lognormal. The number frequency for the j-th interval was calculated by:
g. = (£./0.5)/ Y (£./p.3) for j =1, 2,... 10 .
] J 3 1 3

These conversions used mass frequencies and 507 diameters in Table A.l and
no modifications of any diameters were made.

Calculated Bl = (skewness)? and kurtosis values are plotted in Fig.
13. These plots show that the number frequency would be better
approximated by a lognormal distribution than Johnson”s frequency

distributions. This study implies that the distribution that approximates

mass frequency may not apply to number frequency.
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IV. CONCLUSIONS

This study demonstrated that lognormal is not always a good assumption
for the distribution of particle size data collected on UF, aerosols. The
Johnson”s SB system is introduced as a method of fitting the particle size
data. This system transforms the data so it can be approximated by the
standardized normal distribution. Reasonable fits were judged to occur in
most cases. Correlation of distributional properties with experimental
conditions are inconclusive.

The type of frequencies, either mass or number, is also an important
consideration for modeling. Number frequencies appear to be adequately
approximated by lognormal distributions and mass frequencies appear to be
adequately approximated by Johnson”’s frequency distributions. However,
converting from number to mass or from mass to number frequencies does not
necessarily preserve the distributional type.

Future experiments should consider doing factorial experiments using
different levels of relative humidity and release temperatures. Factorial
experiments would permit independent estimatés of the two effects. During
the experiment, sampling times should be taken in uniform increments for

all combinations of relative humidity and release times.
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Experimental Data
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Mass Fractions (Pickrell, 1982) at 50% particle size
diameters (micrometers) for the five data tables at

different sampling times.

Table A.l.

Data from Table 1, 35% R.H.
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(cont”d)

Table A.1l.

Data from Table 3, 707 R.H.
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Table A.1. (cont”d)

Data from Table 5, 100%Z R.H.

OBS DIAM F4 F18 F30 F45 F90 F150 F330

1 17.678 0.00 0.00 0.00 0.00 0.00 0.02 0.00

2 8.839 0.00 0.00 0.00 0.00 0.00 0.01 0.00

3 4.526 0.00 0.00 0.00 0.00 0.00 0.01 0.00

4 2.263 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 1.131 0.01 0.03 0.04 0.11 0.22 0.19 0.13

6 0.566 0.24 0.24 0.40 0.40 0.31 0.33 0.34

7 0.283 0.34 0.32 0.18 0.18 0.14 0.15 0.18

8 0.141 0.16 0.16 0.09 0.08 0.06 0.04 0.08

9 0.071 0.17 0.18 0.18 0.16 0.16 0.15 0.16

10 0.035 0.07 0.08 0.11 0.08 0.11 0.10 0.11

Table A.2. Frequency of the number of particle sizes mass fractions
(Lux, 1982) for static (FS), dynamic (FD), and catastrophic
(FC) release modes.
0% 50% 100%
OBS DIAM DIAM DIAM FS FD FC

1 0.01 0.25 0.50 0.0162 0.0412 0.2193
2 0.50 0.65 0.80 0.0970 0.1588 0.2973
3 0.80 0.95 1.10 0.1745 0.1735 0.2797
4 1.10 1.25 1.40 0.2004 0.1824 0.1286
5 1.40 1.60 1.80 0.1616 0.1529 0.0526
6 1.80 1.95 2.10 0.1081 0.0980 0.0107
7 2.10 2.25 2.40 0.0905 0.0735 0.0117
8 2,40 2.55 2.70 0.0582 0.0471 0.0000
9 2.70 2,85 3.00 0.0517 0.0235 0.0000
10 3.00 5.00 7.00 0.0500 0.0000

0.0420
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